
Intro to REST

Joe Gregorio
Google

REST is an
Architectural Style

Shaker
Architectural

Style

REST
Architectural

Style
HTTP

HTTP

Why?

The Web

Client Web
Server

Request

Response

Request

 GET /news/ HTTP/1.1
 Host: example.org
 Accept-Encoding: compress, gzip
 User-Agent: Python-httplib2

Response

HTTP/1.1 200 Ok
Date: Thu, 07 Aug 2008 15:06:24 GMT
Server: Apache
ETag: "85a1b765e8c01dbf872651d7a5"
Content-Type: text/html
Cache-Control: max-age=3600

<!DOCTYPE HTML>
...

 GET /news/ HTTP/1.1
 Host: example.org
 Accept-Encoding: compress, gzip
 User-Agent: Python-httplib2

Resource = http://example.org/news/

 GET /news/ HTTP/1.1
 Host: example.org
 Accept-Encoding: compress, gzip
 User-Agent: Python-httplib2

Method = GET

Methods

GET – Safe, Idempotent, Cacheable
PUT – Idempotent
DELETE – Idempotent
HEAD – Safe, Idempotent
POST

<!DOCTYPE HTML>
<html>
 <head>
 ...

Representation

 ...
 <body>
 <p>
 Home
 ...

Hypertext

...
 <head>
 <link href="/css/b/base.css"
 type="text/css"
 rel="stylesheet">
...

Hypertext

...
<head>
 <script src="utility.js"
 type="text/javascript">
 </script>
...

Code on Demand

...
Server: Apache
ETag: "85a1b765e8c01dbf872651d7a5"
Content-Type: text/html
Cache-Control: max-age=3600
...

Control Data

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

The Web

Client Web
Server

Request

Response

The Web

User Agent Origin
Server

Request

Response

Intermediaries

User Agent Origin
Server

Intermediaries

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Intermediaries

User Agent Origin
Server

Proxies Gateways

Intermediaries

User Agent Origin
Server

Proxies Gateways

CC CC

...
Server: Apache
ETag: "85a1b765e8c01dbf872651d7a5"
Content-Type: text/html
Cache-Control: max-age=3600
...

Cache Hit

User Agent Origin
Server

Intermediary

C

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Benefits

Network Performance
• Efficiency
• Scalability
• User Perceived Performance

Benefits

Network Performance
• Efficiency
• Scalability
• User Perceived Performance

Benefits

Network Performance
• Efficiency
• Scalability
• User Perceived Performance

Benefits

Network Performance
• Efficiency
• Scalability
• User Perceived Performance

Other Benefits
• simplicity
• evolvability
• extensibility
• customizability
• configuration
• reusability
• visibility
• portability
• reliability

Benefits

Aren't Free

Comparison

XML-RPC

Atom Publishing Protocol

XML-RPC

It's remote procedure calling using HTTP as
the transport and XML as the encoding. XML-
RPC is designed to be as simple as possible,
while allowing complex data structures to be

transmitted, processed and returned.
http://www.xmlrpc.com/

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
 <methodName>getStateName</methodName>
...

HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:08 GMT

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value>
 <string>Maine</string>
...

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
<methodName>getStateName</methodName>
...

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
<methodName>getStateName</methodName>
...

Atom Publishing
Protocol

 The Atom Publishing Protocol (AtomPub) is
an application-level protocol for publishing and
editing Web resources. The protocol is based

on HTTP transfer of Atom-formatted
representations. The Atom format is

documented in the Atom Syndication Format.
[RFC 5023]

Service Document

 A document that describes the location and
 capabilities of one or more Collections,

grouped into Workspaces.
[RFC 5023]

GET a Service Document

GET /collection/ HTTP/1.0
Host: example.com

HTTP/1.1 200 Ok
Date: Thu, 14 Aug 2008 23:26:31 GMT
Server: Apache
Content-Length: 753
Vary: Accept-Encoding,User-Agent
Content-Type: application/atomsvc+xml

<?xml version="1.0" encoding="utf-8"?>
<service
 xmlns="http://www.w3.org/2007/app"
 ...

...
<collection href="entry/">
 <atom:title>entry</atom:title>
...

GET a Collection

GET /collection/entry/ HTTP/1.0
Host: example.com

HTTP/1.1 200 Ok
Date: Thu, 14 Aug 2008 23:26:31 GMT
Server: Apache
Content-Length: 753
Vary: Accept-Encoding,User-Agent
Content-Type: application/atom+xml

<?xml version="1.0" encoding="utf-8"?>
<feed
 xmlns="http://www.w3.org/2005/Atom"
...

<?xml version="1.0" encoding="utf-8"?>
<feed
 ...
 <title type="text">Example </title>
 <link href="?page=1" rel="next" />
 ...

...
<entry>
 <title>Lists I Like</title>
 <link
 href="http://example.com/entry/2"
 rel="edit" />
...

http://example.com/entry/2

As you can see, benefits

Long-lived Images

Set the cache for images to very long
time. If you need to update the image,
upload a new image to a new URI and
change the HTML to point to that new
URI.

HTML

...

...

Image

HTTP/1.1 200 Ok
Date: Thu, 15 Aug 2008 23:26:31 GMT
Server: Apache
Content-Length: 50753

Cache-Control: max-age=2592000
...

HTML

...

...

Further Reading

●RFC 2616
●RFC 3986
●Architectural Styles and the Design
of Network-based Software
Architectures

● Caching Tutorial

 1

Intro to REST

Joe Gregorio
Google

Hi, I'm Joe Gregorio and I work at Google in
Developer Relations. This talk in on REST and
in the talk I presume you are familiar with the
Atom Publishing Protocol. If you aren't then you
can watch my video "An Introduction to the
Atom Publishing Protocol" and then come back
and watch this video.

So let's begin.

 2

REST is an
Architectural Style

What is REST?
=============

You may have seen or heard the term REST,
which comes from
Roy Fielding's Thesis and stands for
Representational State Transfer.
It is an architectural style.

 3

Shaker
Architectural

Style

http://www.flickr.com/photos/worobod/322627448/

CC Attribution

Now an architectural style is an abstraction, as
opposed to a concrete thing. For example, this
shaker house is different than the Shaker
Architectural Style. The "architectural style" of
Shaker defines the attributes or characteristics
you would see in a house built in that style.

 4

REST
Architectural

Style
HTTP

In the same way, the REST Architectural Style is
a set of architectural constraints you should see
in a protocol built in that style.

 5

HTTP

HTTP is one such protocol, and for the
remainder of this talk we're going to just talk
about HTTP.

Now it's simply not possible to cover every
aspect of HTTP so at the end of this presentation
there will be a further reading list.

 6

Why?

So why should you care about REST? It's the architecture
of the web as it works today, and if you're going to be
building applications that run on the web, shouldn't you
be working *with* that architecture, instead of against it?

Hopefully you'll see as we go through this video that there are
many opportunities to increase the performance and scalability
of your application, and solve some traditionally tricky problems
by working with HTTP and taking full advantage
of it's capabilities.

 7

The Web

Client
Web

Server

Request

Response

Let's get some of the basics down - some
nomenclature and the operation of HTTP.

At its simplest HTTP is a simple request-
response protocol, your browser makes a request
and the server sends a response. The beauty of
the web is that it appears very simple, as if your
browser talks directly to a single server.

 8

Request

 GET /news/ HTTP/1.1
 Host: example.org
 Accept-Encoding: compress, gzip
 User-Agent: Python-httplib2

let's look in detail at a specific request and
response

Here is a GET request to
http://example.org/news/

 9

Response

HTTP/1.1 200 Ok
Date: Thu, 07 Aug 2008 15:06:24 GMT
Server: Apache
ETag: "85a1b765e8c01dbf872651d7a5"
Content-Type: text/html
Cache-Control: max-age=3600

<!DOCTYPE HTML>
...

And here is the response

 10

 GET /news/ HTTP/1.1
 Host: example.org
 Accept-Encoding: compress, gzip
 User-Agent: Python-httplib2

Resource = http://example.org/news/

The request is to a resource identified by a URI.

In this case http://example.org/news/

Resources, or addressability is very important,

 11

 GET /news/ HTTP/1.1
 Host: example.org
 Accept-Encoding: compress, gzip
 User-Agent: Python-httplib2

Method = GET

There is a method, the action on that resource

 12

Methods

GET – Safe, Idempotent, Cacheable
PUT – Idempotent
DELETE – Idempotent
HEAD – Safe, Idempotent
POST

There is a small set of methods and they have
specific functions and specific characteristics

 13

<!DOCTYPE HTML>
<html>
 <head>
 ...

Representation

The representation is the body, in this case an
HTML document

 14

 ...
 <body>
 <p>
 Home
 ...

Hypertext

HTML is a form of hypertext, which means it
has links to other resources, here is a tradition
link that you would click on

 15

...
 <head>
 <link href="/css/b/base.css"
 type="text/css"
 rel="stylesheet">
...

Hypertext

but there is more than one kind of link, here is a
link to a CSS document, which will provide
styling for the page

 16

...
<head>
 <script src="utility.js"
 type="text/javascript">
 </script>
...

Code on Demand

And there is also a link to some JavaScript, also
hypertext example.

This one is particularly important as it is Code
on Demand, the ability of loading code into the
browser to execute on the client.

 17

...
Server: Apache
ETag: "85a1b765e8c01dbf872651d7a5"
Content-Type: text/html
Cache-Control: max-age=3600
...

Control Data

The response headers show control data, such as
this header which controls how long the
response can be cached.

 18

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

So now that we've reviewed those parts of HTTP let's look at the
characteristics of a RESTful protocol:

 * Resource - Application state and functionality are abstracted
into resources

 * URI - Every resource is uniquely addressable using a
universal syntax for use in hypermedia links

 * Uniform Interface - All resources share a uniform
interface for the transfer of state between client and resource,
consisting of

 o Methods - A constrained set of well-defined operations

 o Representation - A constrained set of content types,
optionally supporting code on demand

 * A protocol which is:

 o Client-server

 o Stateless

 o Cacheable

 o Layered

 19

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Now we've already talked about many of these
aspects with HTTP, that Resources are identified
by URIs

 20

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

And that those resources have a uniform
interface

 21

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

, understanding a limited set of methods such as
GET, PUT, POST, DELETE, and HEAD

 22

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

And that the representations sent are self-
identified, a constrained set of content types, that
might not only be hypertext, but could also
include Code on Demand, such as the example
we saw with JavaScript.

 23

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

And we've even seen that HTTP is a client-
server protocol. to discuss the remainder of the
characteristics of the protocol we need to look at
the underlying structure of the web.

 24

The Web

Client
Web

Server

Request

Response

We originally started out with this simplified
example of how the web appears to a client. Let's
switch to using the right names for each of these
pieces.

 25

The Web

User Agent
Origin
Server

Request

Response

They are the User Agent and the Origin Server.

 26

Intermediaries

User Agent
Origin
Server

Intermediaries

But the reality is more complicated than that.

There can be many intermediaries between you
and the server you're connecting to. By
"intermediaries" we mean "HTTP
intermediaries", which doesn't include devices at
lower levels in the protocol stack like routers,
modems, and access points.

 27

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

Those intermediaries are the layered part of the
protocol, and that layering allow intermediaries
to be added atvarious points in the request-
response path without changing the interfaces
between components, where they do things to
passing messages such as translation or
improving performance with caching

 28

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

This is also why its important that interaction
between requests is stateless, that is, each request
is independent from the others, allowing the
intermediaries to work on a single interaction
w/o knowing the entire topology, and since
different requests may travel through different
intermediaries there may be no chance of
visibility between interactions.

 29

Intermediaries

User Agent
Origin
Server

Proxies Gateways

Intermediaries include proxies and gateways.
Proxies are chosen by the client, while gateways
are chosen by the origin server or are imposed
by the network. Despite the slide showing only
one proxy and gateway realize there may be
several proxies and gateways between a user-
agent and origin server, or there may be none.

 30

Intermediaries

User Agent
Origin
Server

Proxies Gateways

CC CC

And finally, every actor in the chain, from the
user-agent, through the proxies, and to the origin
server, may have a cache.

 31

...
Server: Apache
ETag: "85a1b765e8c01dbf872651d7a5"
Content-Type: text/html
Cache-Control: max-age=3600
...

If an intermediary does caching and a response
indicates that the response can be cached, in this
case, for an hour then

 32

Cache Hit

User Agent
Origin
Server

Intermediary

C

if a new request for that resources comes within
the hour, then the cached response will be
returned.

 33

Characteristics
• Resources

–URI
–Uniform Interface

• Methods
• Representation

• Protocol
–Client-Server
–Stateless
–Cacheable
–Layered

those caches finish out the major characteristics
of our REST protocol.

 34

Benefits

Network Performance
• Efficiency
• Scalability
• User Perceived Performance

now we said this architecture had benefits, what
are some of those? Let's first look at some
performance benefits, which include efficiency,
scalability, and user perceived performance

 35

Benefits

Network Performance
• Efficiency
• Scalability
• User Perceived Performance

HTTP is efficient because of all those caches,
your request may not have to reach all the way
back to the origin server, or in the case of a local
user-agent cache, may never hit the network to
begin with.

Control data allows the singaling of
compression, so responses can be gzip'd before
being sent to user-agents that can handle them.

 36

Benefits

Network Performance
• Efficiency
• Scalability
• User Perceived Performance

Scalability comes from many areas. The use of
gateways allows you to distribute traffic among a
large set of origin servers based on method, URI
or content-type, or any other visible control data
or meta-data in the request headers.

Caching helps scalability also as it reduces the
actual number of requests that hit the origin
server.

Statelessness allows requests to be routed
through different gateways and proxies, thus
avoiding introducing bottlenecks, allowing more
intermediaries to be added as needed.

 37

Benefits

Network Performance
• Efficiency
• Scalability
• User Perceived Performance

User Perceived Performance in increased by having a reduced set of
known media types, that allows browsers to handle known types
much faster, for example, partial rendering of HTML documents as
they download. Also, Code on Demand allows computations to be
moved closer to the client, or closer to the server, depending on
where the work can be done fastest. For example, having JavaScript
code to do form validation before a request is even made to the
network is obviously much faster than round-tripping the form values
to the server and having the server return any validation errors.

Caching also helps here, as requests may not need to go completely
back to the origin server, or even leave the user-agent if there is a hit
in the local cache.

Also, since GET is idempotent and safe a user-agent could pre-fetch
results before they are needed, thus increasing user perceived
performance.

 38

Other Benefits
• simplicity
• evolvability
• extensibility
• customizability
• configuration
• reusability
• visibility
• portability
• reliability

Lots of other benefits we won't cover, but they
are enumerated in Roy's thesis.

 39

Benefits

Aren't Free

But all of these benefits aren't free, you actually
have to structure your application or service to
take advantage of them, if you don't then you
won't get any benefits.

 40

Comparison

XML-RPC

Atom Publishing Protocol

To see how the structuring helps, lets look at two
protocols XML-RPC and the Atom Publishing
Protocol.

 41

XML-RPC

It's remote procedure calling using HTTP as
the transport and XML as the encoding. XML-
RPC is designed to be as simple as possible,
while allowing complex data structures to be

transmitted, processed and returned.
http://www.xmlrpc.com/

 42

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
 <methodName>getStateName</methodName>
...

this is what and XML-RPC request looks like

 43

HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:08 GMT

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value>
 <string>Maine</string>
...

And here's the example response.

 44

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
<methodName>getStateName</methodName>
...

All requests are POSTs

So what do the intermediaries see of this
request/response?

Is it safe? No.
It is idempotent? No.
Cacheable? No.

 45

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
<methodName>getStateName</methodName>
...

And all ll requests go to the same URI, which
means that if you were going to distribute many
such calls among a group of origin servers you
would have to look inside the body for the
methodName.

This gives the least amount of information to the
web, and thus doesn't get any help from
intermediaries, and doesn't scale with off the
shelf parts.

 46

Atom Publishing
Protocol

 The Atom Publishing Protocol (AtomPub) is
an application-level protocol for publishing and
editing Web resources. The protocol is based

on HTTP transfer of Atom-formatted
representations. The Atom format is

documented in the Atom Syndication Format.
[RFC 5023]

 47

Service Document

 A document that describes the location and
 capabilities of one or more Collections,

grouped into Workspaces.
[RFC 5023]

For authoring to commence, a client needs to
discover the capabilities and locations of the
available Collections. Service Documents are
designed to support this discovery process.

 48

GET a Service Document

GET /collection/ HTTP/1.0
Host: example.com

To retrieve a service document we send a GET
to its URI

This is good, GET == Safe, idempotent,
cacheable, gzippable,

and as we shall see, the response is hypertext

 49

HTTP/1.1 200 Ok
Date: Thu, 14 Aug 2008 23:26:31 GMT
Server: Apache
Content-Length: 753
Vary: Accept-Encoding,User-Agent
Content-Type: application/atomsvc+xml

<?xml version="1.0" encoding="utf-8"?>
<service
 xmlns="http://www.w3.org/2007/app"
 ...

first, the response is self-identifying via the
content-type,

 50

...
<collection href="entry/">
 <atom:title>entry</atom:title>
...

And it is hypertext as it contains the URIs for
each of the collections. What's highlighted is a
relative URI for the collection.

Once we have a collection URI we can POST an
entry to create a new member, and then
GET/PUT/DELETE the members at their own
URIs.

 51

GET a Collection

GET /collection/entry/ HTTP/1.0
Host: example.com

To retrieve the representation of the collection
we send a GET to its URI

Again, all the same goodness, This is good, GET
== Safe, idempotent, cacheable, gzippable,

and as we shall see, the response is hypertext

 52

HTTP/1.1 200 Ok
Date: Thu, 14 Aug 2008 23:26:31 GMT
Server: Apache
Content-Length: 753
Vary: Accept-Encoding,User-Agent
Content-Type: application/atom+xml

<?xml version="1.0" encoding="utf-8"?>
<feed
 xmlns="http://www.w3.org/2005/Atom"
...

Here is an example response

 53

<?xml version="1.0" encoding="utf-8"?>
<feed
 ...
 <title type="text">Example </title>
 <link href="?page=1" rel="next" />
 ...

And this again has hypertext, in a couple forms

The first is the “next” link, which points to the
set of next entries in the collection.

 54

...
<entry>
 <title>Lists I Like</title>
 <link
 href="http://example.com/entry/2"
 rel="edit" />
...

Lastly is the “edit” URI for the entry. This
identifies a resource where the entry can be
edited.

We send a GET to that URI to retrieve the full
representation
We send a PUT to update it
We send a DELETE to remove it from the
collection

PUTs and DELETEs can invalidate caches along
the way.

 55

Click to add title

As you can see, benefits

 56

Long-lived Images

Set the cache for images to very long
time. If you need to update the image,
upload a new image to a new URI and
change the HTML to point to that new
URI.

A strategy for keeping large items, such as images, in caches

 57

HTML

...

...

 58

Image

HTTP/1.1 200 Ok
Date: Thu, 15 Aug 2008 23:26:31 GMT
Server: Apache
Content-Length: 50753

Cache-Control: max-age=2592000
...

30 days

 59

HTML

...

...

Is we need to change the image, put it at a new
URI also with long caching and update the
HTML to use the new image

 60

Further Reading

●RFC 2616
●RFC 3986
●Architectural Styles and the Design
of Network-based Software
Architectures

● Caching Tutorial

So there you go, a high level view of REST and
how it relates to HTTP. Here is the list of further
reading

You can learn more about caching from Mark
Nottingham's Caching Tutorial

http://www.mnot.net/cache_docs/

Thanks, and have fun

