
Threading is not a model

Joe Gregorio
Developer Relations, Google Wave

Scope

My Opinion

Goal

I want to annoy you.

The path

A short story, a book, design
patterns, and Djikstra

The Principle of Sufficient Irritation

"The Short Happy Life
of the Brown Oxford"

Philip K. Dick

The short story

The Principle of Sufficient Irritation in action

Determining the radioactive irritant is left as an exercise for the reader.

The path

A short story, a book,
design patterns, and

Djikstra

The Design of Everyday Things

The book

The path

A short story, a book, design
patterns, and Djikstra

Setting the record straight

Let's talk about Design
Patterns

I did not say that patterns are bad.
I did say that using them may be a sign of weakness in a language.

A Blog Post

Python isn't Java without the compile

Design Patterns in Dynamic Programming – Peter Norvig
Beyond Java – Bruce Tate

Language

Not talking just about Python

Language

Aren't patterns good?

Yes, but also a sign of weakness

There is a lack of patterns in Python

1. Define 'lack of patterns'

2. Demonstrate that lack

3. Explain why

Hard numbers

comp.lang.python

100,000+ messages

Hard numbers

“factory method pattern” - 0

“abstract-factory pattern” - 0

“flyweight pattern” - 3

“state pattern” - 10

“strategy pattern” - 25

“flyweight” - 36

“visitor pattern” - 60

For your comparison

“dark matter” - 2

For your comparison

“dark matter” - 2

“the pope” - 16

For your comparison

“dark matter” - 2

“the pope” - 16

“sausage” - 66

Presuming there is no overlap among these messages

There is a lack of patterns in Python

1. Define 'lack of patterns'

2. Demonstrate that lack

3. Explain why

Explain Why

The patterns are built in.

No one talks about the 'structured programming' pattern or the 'object-
oriented' pattern any more.

Strategy Pattern on comp.lang.python

class Bisection (FindMinima):
def algorithm(self,line):

return (5.5,6.6)

class ConjugateGradient (FindMinima):
def algorithm(self,line):

return (3.3,4.4)

class MinimaSolver: # context class
strategy=''
def __init__ (self,strategy):

self.strategy=strategy
def minima(self,line):

return self.strategy.algorithm(line)
def changeAlgorithm(self,newAlgorithm):

self.strategy = newAlgorithm

solver=MinimaSolver(ConjugateGradient())
print solver.minima((5.5,5.5))
solver.changeAlgorithm(Bisection())
print solver.minima((5.5,5.5))

Strategy Pattern

“When most of your code does

nothing in a pompous way that is a

sure sign that you are heading in

the wrong direction. Here's a

translation into python”

 - Peter Otten

Strategy Pattern on comp.lang.python

def bisection(line):
return 5.5, 6.6

def conjugate_gradient(line):
return 3.3, 4.4

solver = conjugate_gradient
print solver((5.5,5.5))
solver = bisection
print solver((5.5,5.5))

Proof by Wikipedia

“This pattern is invisible in

languages with first-class

functions.”

http://en.wikipedia.org/wiki/Strategy_pattern

What other language features are there, and what patterns do they
make invisible?

Catalog of Language Features

First-class functions

Meta-programming

Iterators

Closures

Proof by Wikipedia

In object-oriented programming,
the Iterator pattern is a design
pattern in which iterators are
used to access the elements of an
aggregate object sequentially
without exposing its underlying
representation.

http://en.wikipedia.org/wiki/Iterator_pattern

The definition of low-hanging fruit.

Iterators

for element in [1, 2, 3]:
print element

for element in (1, 2, 3):
print element

for key in {'one':1, 'two':2}:
print key

for char in "123":
print char

for line in open("myfile.txt"):
print line

There is a lack of patterns in Python

1. Define 'lack of patterns'

2. Demonstrate that lack

3. Explain why

The path

A short story, a book, design
patterns, and Djikstra

Structured Programming

"Go to statement
considered harmful”

Edsger W. Dijkstra,1968

Letter to the editor, Communications of the ACM , Volume 11, Issue 3
(March 1968)

Structured Programming

We are talking about Routines!

(or procedures, or functions, or

methods) being controversial.

Along with 'if', 'while', and 'switch' statements

The controversy went on for a while

"GOTO Considered Harmful"
Considered Harmful

Frank Rubin, 1987

Communications of the ACM, Vol. 30, No. 3. (March 1987), pp. 195-
196.

With Structured Programming

def hyp(x, y):
 return math.sqrt(x**2 + y**2)

>> hyp(3, 4)
5

What if Structured Programming wasn't built in?

You can do Structure Programming with our built in stack and 'call'
primitives!

def hyp:
 push(pop()**2 + pop()**2)
 call math.sqrt
 return

>> push(3)
>> push(4)
>> call hyp
>> pop()
5

Patterns and Primitives

Pattern

Language
Feature

 Primitives

Model

Some Concurrency Patterns listed on Wikipedia

Lock

Monitor Object

Reactor

Thread pool

Thread-specific storage

These you will see on comp.lang.python

Some Concurrency Patterns listed on Wikipedia

Lock

Monitor Object

Reactor

Thread pool

Thread-specific storage

These you will see on comp.lang.python

Patterns and Primitives

Threadpool
(Pattern)

Language
Feature

Threads + queue + lock
(Primitives)

Concurrency
(Model)

“Just” use threads

Threading is not a model

Threading is a primitive, along with locks, transactional memory, etc.

What are the concurrency models?

1.Communicating Sequential
Processes (CSP)

2.Actors

The difference is only in 'what' is concurrent

CSP Model

● Based on CSP by C.A.R. Hoare.

● An actual model for processes

● All code is written single threaded

● Communication via channels.

Sieve of Eratosthenes

Sieve of Eratosthenes

N 2 3 5 7 11 13

CSP – Stackless – Primes
import stackless

def generate(ch):
 for i in range(2, 1000):
 ch.send(i)

def pfilter(chin, chout, p):
 for i in chin:
 if i % p != 0:
 chout.send(i)

def primes(chin):
 while 1:
 prime = chin.receive()
 print prime
 chout = stackless.channel()
 stackless.tasklet(pfilter)(chin, chout, prime)
 chin = chout

c = stackless.channel()
stackless.tasklet(generate)(c)
stackless.tasklet(primes)(c)
stackless.run()

CSP – Stackless – Primes
import stackless

def generate(ch):
 for i in range(2, 1000):
 ch.send(i)

def pfilter(chin, chout, p):
 for i in chin:
 if i % p != 0:
 chout.send(i)

def primes(chin):
 while 1:
 prime = chin.receive()
 print prime
 chout = stackless.channel()
 stackless.tasklet(pfilter)(chin, chout, prime)
 chin = chout

c = stackless.channel()
stackless.tasklet(generate)(c)
stackless.tasklet(primes)(c)
stackless.run()

N

2

Pn Pn+1

CSP – Go – Primes

func generate(ch chan int) {
for i := 2; ; i++ { ch <- i } // Send 'i' to channel 'ch'.

}

func filter(in, out chan int, prime int) {
for {

i := <-in // Receive 'i' from 'in'.
if i % prime != 0 { out <- i } // Send 'i' to 'out'.

}
}

func main() {
ch := make(chan int) // Create a new channel.
go generate(ch) // Start generate() as a goroutine.
for {

prime := <-ch
fmt.Println(prime)
ch1 := make(chan int)
go filter(ch, ch1, prime)
ch = ch1

}
}

N

2

Pn Pn+1

CSP

An implementation could use:

● Threads

● Locks

● Transactional Memory

Actor Model

● Objects are concurrent

● Objects send, and respond to messages

● All code is written single threaded

Note that the 'channels' are implicit

Actors – IO – Primes

Filter := Object clone
Filter init := method(p,
 self prime := p
 self next := nil
 self
)

Filter number := method(n,
 r := n % prime;
 if (r != 0,
 if (self next == nil,
 n println;
 next = self clone init(n)
)
 next @number(n); yield
)
)

Filter init(2)
for (i, 2, 1000,
 Filter number(i); yield
)

N

2

Pn Pn+1

The path

A short story, a book, design
patterns, and Djikstra

Further Reading

http://golang.org

http://www.iolanguage.com/

http://www.stackless.com/

Things not mentioned

● Futures
● Deterministic vs Non-Deterministic
● REST, MapReduce and other share-nothing
 architectures

http://golang.org/
http://www.iolanguage.com/
http://www.stackless.com/

My Goal

Every time you use a concurrency

pattern you remember the lack of

affordances, and it proves

sufficiently irritating.

The short story, the book, and design patterns.

